Math 280 Final Review Study Guide Problem 1 -

1. Consider three position vectors (tails are the origin):

$$
\begin{aligned}
\overrightarrow{\mathrm{u}} & =\langle 1,0,0\rangle \\
\overrightarrow{\mathrm{v}} & =\langle 4,0,2\rangle \\
\overrightarrow{\mathrm{w}} & =\langle 0,1,1\rangle
\end{aligned}
$$

(a) Find an equation of the plane passing through the tips of $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}$, and $\overrightarrow{\mathbf{w}}$.
(b) Find an equation of the line perpendicular to the plane from part (a) and passing through the origin.

Solution:

(a) Since the tails of the given vectors are at the origin, the tips of the vectors are the points $U=(1,0,0), V=(4,0,2)$, and $W=(0,1,1)$, respectively. The plane containing the tips has $\overrightarrow{\mathbf{n}}=\overrightarrow{U V} \times \overrightarrow{U W}$ as a normal vector. Since $\overrightarrow{U V}=\langle 3,0,2\rangle$ and $\overrightarrow{U W}=\langle-1,1,1\rangle$, the normal vector is

$$
\overrightarrow{\mathbf{n}}=\overrightarrow{U V} \times \overrightarrow{U W}=\langle-2,-5,3\rangle
$$

Using $U=(1,0,0)$ as a point on the plane, an equation for the plane is

$$
-2(x-1)-5(y-0)+3(z-0)=0
$$

(b) The line perpendicular to the plane in part (a) is parallel to the plane's normal vector. Thus, since $\langle-2,-5,3\rangle$ is parallel to the line and the origin $(0,0,0)$ is on the line, the vector equation for the line is

$$
\overrightarrow{\mathbf{r}}(t)=\langle 0,0,0\rangle+t\langle-2,-5,3\rangle
$$

Math 280 Final Review Study Guide
 Problem 2

2. Consider the curve $\overrightarrow{\mathbf{r}}(t)=\left\langle t, t^{3}\right\rangle,-\infty<t<\infty$.
(a) Find the curvature $\kappa(t)$.
(b) Find all values of t where $\kappa(t)=0$.
(c) Compute the limits

$$
\lim _{t \rightarrow \infty} \kappa(t), \quad \lim _{t \rightarrow-\infty} \kappa(t)
$$

(d) What do the limits in part (c) say about the curve $\overrightarrow{\mathbf{r}}(t)$?

Solution:

(a) By definition, the curvature of a curve parametrized by $\overrightarrow{\mathbf{r}}(t)$ is given by the formula

$$
\kappa(t)=\frac{\overrightarrow{\mathbf{r}}^{\prime}(t) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(t)}{\overrightarrow{\mathbf{r}}^{\prime}(t)^{3}}
$$

The first two derivatives of $\overrightarrow{\mathbf{r}}(t)$ are $\overrightarrow{\mathbf{r}}^{\prime}(t)=\left\langle 1,3 t^{2}\right\rangle$ and $\overrightarrow{\mathbf{r}}^{\prime \prime}(t)=\langle 0,6 t\rangle$ and their cross product is $\overrightarrow{\mathbf{r}}^{\prime}(t) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(t)=6 t \hat{\mathbf{k}}$. Thus, the curvature of $\overrightarrow{\mathbf{r}}(t)$ is

$$
\begin{aligned}
& \kappa(t)=\frac{\overrightarrow{\mathbf{r}}^{\prime}(t) \times \overrightarrow{\mathbf{r}}^{\prime \prime}(t)}{\overrightarrow{\mathbf{r}}^{\prime}(t)^{3}}, \\
& \kappa(t)=\frac{6 t \hat{\mathbf{k}}}{\left\|\left\langle 1,3 t^{2}\right\rangle\right\|^{3}} \\
& \kappa(t)=\frac{6|t|}{\left(1+9 t^{4}\right)^{3 / 2}}
\end{aligned}
$$

(b) The curvature is 0 when $t=0$.
(c) The limits of $\kappa(t)$ as $t \rightarrow \pm \infty$ are

$$
\lim _{t \rightarrow \pm \infty} \kappa(t)=\lim _{t \rightarrow \pm \infty} \frac{6|t|}{\left(1+9 t^{4}\right)^{3 / 2}}=0
$$

(d) Lines are curves of zero curvature. Thus, the limits in part (c) suggest that $\overrightarrow{\mathbf{r}}(t)$ behaves linearly as $t \rightarrow \pm \infty$.

Math 280 Final Review Study Guide Problem 3 -

3. Given the function of two variables $G(x, y)=\sqrt{y-x^{2}}$
(a) Determine the domain of G.
(b) Sketch the level curves $G=0, G=1$, and $G=2$ all on one coordinate grid. What kind of curves are they?
(c) At the point $(1,2)$, find the direction in which G has its maximum rate of increase. Also determine this maximum rate.

Solution:

(a) The domain of G is the set of all pairs (x, y) such that $y-x^{2} \geq 0$.
(b)

(c) The direction of maximum rate of increase of $G(x, y)$ at the point $(1,2)$ is, by definition,

$$
\hat{\mathbf{u}}=\frac{\vec{\nabla} G(1,2)}{\vec{\nabla} G(1,2)}
$$

The gradient of G is

$$
\vec{\nabla} G=\left\langle G_{x}, G_{y}\right\rangle=\left\langle-\frac{x}{\sqrt{y-x^{2}}}, \frac{1}{2 \sqrt{y-x^{2}}}\right\rangle
$$

The value of $\vec{\nabla} G$ at the point $(1,2)$ is $\vec{\nabla} G(1,2)=\left\langle-1, \frac{1}{2}\right\rangle$ and its magnitude is $\vec{\nabla} G(1,2)=\frac{\sqrt{5}}{2}$. Thus, the direction of maximum rate of increase of G at $(1,2)$ is

$$
\hat{\mathbf{u}}=\frac{\left\langle-1, \frac{1}{2}\right\rangle}{\frac{\sqrt{5}}{2}}
$$

The maximum rate of increase, by definition, is $\quad \vec{\nabla} G(1,2)=\frac{\sqrt{5}}{2}$.

Math 280 Final Review Study Guide Problem 4 -

4. Find absolute maximum and minimum of the function $f(x, y)=x y-x$ over the region $R=\left\{x^{2}+y^{2} \leq 4\right\}$. Also, find the points where these extremes occur.

Solution: First, the region R is closed and bounded (i.e. compact) and f is defined at every point in R. Therefore, we are guaranteed to find absolute extrema. Next, we look for all critical points of f in R. These will be points for which the first derivatives of f vanish. Thus, we must solve the system of equations:

$$
\begin{aligned}
& f_{x}=y-1=0 \\
& f_{y}=x=0
\end{aligned}
$$

which has $x=0$ and $y=1$ as the only solution. We must now determine the extreme values of f on the boundary of R which is the circle $x^{2}+y^{2}=4$. We will resort to using the method of Lagrange multipliers to find these values. The following system of equations must then be solved:

$$
\begin{aligned}
f_{x} & =\lambda g_{x} \\
f_{y} & =\lambda g_{y} \\
g(x, y) & =0
\end{aligned}
$$

where $g(x, y)=x^{2}+y^{2}-4$. Evaluate the partial derivatives we then have

$$
\begin{align*}
y-1 & =\lambda(2 x), \tag{1}\\
x & =\lambda(2 y), \tag{2}\\
x^{2}+y^{2} & =4 . \tag{3}
\end{align*}
$$

Dividing Equation (1) by Equation (2) and simplifying gives us

$$
\begin{aligned}
\frac{y-1}{x} & =\frac{\lambda(2 x)}{\lambda(2 y)}, \\
\frac{y-1}{x} & =\frac{x}{y}, \\
y(y-1) & =x^{2}, \\
x^{2} & =y^{2}-y
\end{aligned}
$$

Substituting $y^{2}-y$ for x^{2} in Equation (3) and solving for x we get

$$
\begin{array}{r}
x^{2}+y^{2}=4, \\
y^{2}-y+y^{2}=4, \\
2 y^{2}-y-4=0
\end{array}
$$

which has the two solutions

$$
y_{1,2}=\frac{1 \pm \sqrt{33}}{4}
$$

Let y_{1} be the positive solution and y_{2} the negative one. If $y=y_{1}$ then the corresponding x-values are $x_{11,12}= \pm \sqrt{y^{2}-y_{1}}$. Similarly, if $y=y_{2}$ then the corresponding x-values are $x_{21,22}= \pm \sqrt{y_{2}^{2}-y_{2}}$.
We must now evaluate $f(x, y)$ at the critical point $(0,1)$ and at all critical points on the boundary of R.

$$
\begin{aligned}
& f(0,1)=0 \\
& f\left(x_{11}, y_{1}\right)=x_{11}\left(y_{1}-1\right)=\left(y_{1}-1\right) \\
& f\left(x_{12}, y_{1}\right)=x_{12}\left(y_{1}-1\right)=-\left(y_{1}-1\right) \\
& y_{1}^{2}-y_{1} \overline{y_{1}^{2}-y_{1}}=\sqrt{y_{1}}\left(y_{1}-1\right)^{3 / 2} \\
& f\left(x_{21}, y_{2}\right)=x_{21}\left(y_{2}-1\right)=\left(y_{2}-1\right) \\
& f\left(x_{22}, y_{2}\right)=x_{22}\left(y_{2}-1\right)=-\left(y_{2}-1\right) \\
& y_{2}^{2}-y_{2} \overline{y_{2}^{2}-y_{2}}=-\sqrt{-y_{2}}\left(1-y_{2}\right)^{3 / 2} \\
&-y_{2}\left(1-y_{2}\right)^{3 / 2}
\end{aligned}
$$

A calculator would be useful here but isn't necessary. We can estimate $\sqrt{33}$ to be 5.75 using a linear approximation of $F(x)=\sqrt{x}$ about $x=36$ giving us $y_{1} \approx 1.6875$ and $y_{2} \approx-1.1875$. One can then show that $f\left(x_{21}, y_{2}\right)$ is the absolute maximum and $f\left(x_{22}, y_{2}\right)$ is the absolute minimum of f on R.

Math 280 Final Review Study Guide
 Problem 5

5. Consider the integral

$$
{ }_{0}^{1} \quad x_{x^{2}}^{1} x \cos y^{2} d y d x
$$

(a) Sketch the region of integration.
(b) Reverse the order of integration properly.
(c) Evaluate the integral from part (b).

Solution:

(a) The region of integration is sketched below.

(b) Upon switching the order of integration we obtain

$$
{ }^{1} \quad x \cos y^{2} d x d y
$$

(c) Evaluating the above double integral we get

$$
\begin{aligned}
{ }_{0}^{1} \quad{ }_{0}^{\sqrt{y}} x \cos y^{2} d x d y & ={ }_{0}^{1} \quad \frac{1}{2} x^{2} \cos y^{2}{ }_{0}^{\sqrt{y}} d y \\
& =\frac{1}{2} \quad{ }_{0}^{1} y \cos y^{2} d y \\
& =\frac{1}{2} \quad \frac{1}{2} \sin y^{2} \\
& =\frac{1}{4} \sin (1)
\end{aligned}
$$

Math 280 Final Review Study Guide Problem 6 -

6. Consider the following vector field in space

$$
\overrightarrow{\mathbf{F}}=\langle x+y, x+z, y\rangle
$$

(a) Check that this field is conservative.
(b) Find a potential of $\overrightarrow{\mathbf{F}}$.
(c) Evaluate the following line integral

$$
\int_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{r}}
$$

where C is a contour originating at $(0,0,0)$ and terminating at $(0,1,1)$.

Solution:

(a) Let $P=x+y, Q=x+z$, and $R=y$. Given that $P_{y}=Q_{x}=1, P_{z}=R_{x}=0$, and $Q_{z}=R_{y}=1$ we know that $\overrightarrow{\mathbf{F}}$ is conservative by the cross-partials test.
(b) By inspection, a potential function for $\overrightarrow{\mathbf{F}}$ is $\varphi(x, y, z)=\frac{1}{2} x^{2}+x y+y z$.
(c) Using the Fundamental Theorem of Line Integrals, we obtain

$$
\begin{aligned}
\int_{C} \overrightarrow{\mathbf{F}} \bullet d \overrightarrow{\mathbf{r}} & =\varphi(0,1,1)-\varphi(0,0,0) \\
& =\left(\frac{1}{2}(0)^{2}+0 \cdot 1+1 \cdot 1\right)-\left(\frac{1}{2}(0)^{2}+0 \cdot 0+0 \cdot 0\right) \\
& =1
\end{aligned}
$$

Math 280 Final Review Study Guide Problem 7 -

7. Compute the circulation of the vector field

$$
\overrightarrow{\mathbf{H}}=-y^{3}, x^{3}
$$

over the boundary of the region $D=\left\{x^{2}+y^{2} \leq 1, y \geq 0\right\}$.
Solution: The boundary of D is a simple, closed curve oriented counter clockwise. Therefore, we may use Green's Theorem to compute the circulation:

$$
\oint_{\partial D} \overrightarrow{\mathbf{H}} \bullet d \overrightarrow{\mathbf{r}}=\iint_{D}\left(Q_{x}-P_{y}\right) d A
$$

Letting $P=-y^{3}$ and $Q=x^{3}$ we get $Q_{x}=3 x^{2}$ and $P=-3 y^{2}$. Therefore, $Q_{x}-P_{y}=$ $3\left(x^{2}+y^{2}\right)$. Since D is a half-disk, we will use polar coordinates to evaluate the double integral above. The integrand then becomes $3 r^{2}, d A=r d r d \theta$, and the region D can be described as $\{0 \leq r \leq 1,0 \leq \theta \leq \pi\}$. Thus, the circulation is

$$
\begin{aligned}
\oint_{\partial D} \overrightarrow{\mathbf{H}} \bullet d \overrightarrow{\mathbf{r}} & =\iint_{D}\left(Q_{x}-P_{y}\right) d A \\
& =\int_{0}^{\pi} \int_{0}^{1} 3 r^{2} \cdot r d r d \theta \\
& =\int_{0}^{\pi}\left[\frac{3}{4} r^{4}\right]_{0}^{1} d \theta \\
& =\int_{0}^{\pi} \frac{3}{4} d \theta \\
& =\frac{3 \pi}{4}
\end{aligned}
$$

Math 280 Final Review Study Guide Problem 8 -

8. Compute the volume of the spherical wedge given in spherical coordinates by

$$
W=1 \leq \rho \leq 2, \quad 0 \leq \theta \leq \frac{\pi}{2}, \quad 0 \leq \phi \leq \frac{\pi}{2}
$$

Solution: Using spherical coordinates, the volume of the wedge is computed as follows

$$
\begin{aligned}
& V=\quad{ }_{W} 1 d V, \\
& \left.=\begin{array}{llll}
\pi / 2 & \pi / 2 & 2 \\
0 & { }^{0} & & \rho^{2} \sin \phi \\
& \pi / 2 & 1 & 2
\end{array}\right] d \phi d \theta,
\end{aligned}
$$

$$
\begin{aligned}
& =\begin{array}{ccc}
\begin{array}{c}
\pi / 2 \\
0 / 2 \\
\\
\\
\pi / 2
\end{array} & 0 & \frac{7}{3} \sin \phi d \phi d \theta, \\
& \pi / 2
\end{array} \\
& ={ }_{0}^{\pi / 2}-\frac{7}{3} \cos \phi{ }_{0}^{\pi / 2} d \theta, \\
& ={ }_{0}^{\pi / 2} \frac{7}{3} d \theta, \\
& =\frac{7 \pi}{6}
\end{aligned}
$$

